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ABSTRACT

Data streams, often seen as sources of events, have appeared
on the Web. Stream processing on the Web needs how-
ever to cope with the typical openness and heterogeneity of
the Web environment. Semantic Web technologies, meant
to facilitate data integration in an open environment, can
help to address heterogeneities across multiple streams. In
this paper we present Sparkwave, an approach for continu-
ous pattern matching over RDF data streams. Sparkwave
is based on the Rete algorithm, which allows efficient and
truly continuous processing of data streams. Sparkwave is
able to leverage RDF schema information associated to data
streams to compute entailments, so that implicit knowledge
is taken into account for pattern matching. In addition, it
further extends Rete to support time-based sliding windows
and static data instances, to cope with the streaming nature
of processed data and real-world use cases.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Informa-
tion filtering, Selection process; H.2.4 [Systems]: Query
processing

General Terms

Algorithms, Performance

Keywords

RDF, stream processing, stream reasoning, pattern match-
ing, semantic Web, inference, Rete.

1. INTRODUCTION

Data streams are becoming more and more common on
the Web. Many streams regarding e.g. stock exchange move-
ments, weather information, sensor readings, or social net-
working activity notifications are already present, and plat-
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forms to collect and share these streams, such as Cosm,’
have appeared. Techniques to process data streams while
responding in a timely fashion are also following the trend.
The most prominent areas in this respect are Complex Event
Processing (CEP) [22] and Data Stream Management Sys-
tems (e.g., Aurora [1] and STREAM [6]).

The combination of data stream processing techniques
with data streams distributed across the Web comes as a
natural fit; data stream processing on the Web needs how-
ever to cope with the typical openness and heterogeneity
of the Web environment. Semantic Web technologies are
meant to facilitate data integration in open environments,
thus can help to overcome these problems by using machine
processable descriptions to resolve heterogeneities across mul-
tiple streams. For example, Semantic Sensor Web [25] repre-
sents an attempt to collect and process avalanches of sensor
data using semantic Web technologies.

The application of semantic Web technologies to data
stream processing opens also an opportunity to perform rea-
soning tasks over continuously and rapidly changing infor-
mation, which was a trigger for the emergence of the stream
reasoning research area [13]. Stream reasoning systems aim
at preserving the core value of data stream processing, i.e.
processing streaming data in a timely fashion, while provid-
ing a number of features: support for expressive queries/-
patterns and complex schemas, integration of static back-
ground knowledge with streaming data, support for tempo-
ral operators, time-based windows and various consumption
strategies. In addition, stream reasoning systems need to
take into account entailed knowledge, which results in higher
complexity and performance penalties.

In this paper we present Sparkwave, a solution for con-
tinuous schema-enhanced pattern matching over RDF data
streams. The aim of Sparkwave is to achieve and retain high-
throughput RDF graph pattern matching while providing a
number of stream reasoning features such as support for
fairly expressive pattern definitions, time-based sliding win-
dows and schema-entailed knowledge. Having performance
as a primary goal, Sparkwave includes limited support for
background knowledge (schema and static data instances)
and supports only a limited set of schema constructs; it is
therefore complementary to other solutions which offer such
functionalities but in the context of less stringent perfor-
mance requirements.

The rest of this paper is structured as follows. In Section 2
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we give an overview of the related work. In Section 3 we first
define basic notions needed to establish the environment for
RDF stream processing, and then we focus on Sparkwave,
describing its architecture and in particular the support for
schema-based entailments, time-based sliding windows, and
static instances. The section is concluded with a compre-
hensive example. In Section 4 we present evaluation results.
Finally, in Section 5 we outline future work directions, and
in Section 6 we conclude the paper.

2. RELATED WORK

A solution for pattern matching over RDF data streams
needs to address issues along at least two different dimen-
sions. First, the presence of RDF schema entailments can
materialise RDF statements at runtime, which is not the
case in conventional data stream processing systems. En-
tailed statements, even if they are not explicitly present in
the input streams, can contribute to pattern completion.
Second, the streaming nature of the data calls for support
to express and match patterns taking into account the tem-
poral dimension, and thus for operators that are common for
Complex Event Processing systems but are not part of the
usual notion of RDF pattern matching (e.g. in SPARQL). A
number of languages extending SPARQL with temporal con-
structs have already been proposed (e.g., T-SPARQL [27],
SPARQL-ST [23] and Streaming SPARQL [10]).

A first RDF stream processing engine operating on top
of SPARQL has been reported in [18]. The engine evalu-
ates graphs compliant to the proposed streaming SPARQL
algebra in a dataflow way. The graphs, produced as result
of SPARQL query transformation into the algebra, inter-
twine operators which perform intra-triple (e.g., triple pat-
tern operator) and inter-triple (e.g., join, filter, and optional
operators) checks. The engine also includes a framework
for logical and physical optimisations (e.g., join operator re-
ordering, pushed upward filters, and hash-based selection
of triple pattern operators), however the proposed algebra
lacks typical stream processing features such as time-based
windows.

ETALIS [5] is a Complex Event Processing system, pro-
viding a number of features such as evaluation of out-of-
order events, computation of aggregate functions, dynamic
insertion and retraction of patterns, and several garbage col-
lection policies and consumption strategies. To operate on
RDF streams, ETALIS provides EP-SPARQL [4], an ex-
tension of SPARQL that introduces a number of tempo-
ral operators (compliant to ETALIS ones) used to combine
RDF graph patterns along time-related dependencies. Static
background knowledge, in the form of an RDF'S ontology, is
also supported. EP-SPARQL patterns are evaluated on top
of ETALIS, and thus can benefit from the rich set of ETALIS
features. However, ETALIS does not provide native support
for entailments based on RDF schema, which may hinder its
applicability in case of complex pattern expressions and high
frequency streams due to performance reasons.?

C-SPARQL [8] is a SPARQL-based stream reasoning sys-
tem and language extended with the notions of RDF streams,
time windows, handling of multiple streams and aggrega-
tion functions. It is suited for cases in which a significant
amount of background knowledge needs to be combined with

2ETALIS translates an RDFS ontology into a set of Prolog
rules via an external library.

data streams (e.g., coming from heterogeneous sensors) in
order to enable time-constrained reasoning. The RDF state-
ments from the streams are fed into pre-reasoners perform-
ing incremental RDF schema-based materialisation of RDF
snapshots, which are further fed into reasoners to which
SPARQL queries are submitted [7]. In terms of temporal
operators, C-SPARQL provides a simple timestamp() func-
tion to express temporal relationships between RDF pat-
terns. Since queries are periodically evaluated, C-SPARQL
does not provide truly continuous querying, and in case of
short time windows, high-frequency streams and rich back-
ground knowledge, the overhead to compute the incremental
materialisation of RDF snapshots can become significant.

CQELS [21] represents a recent solution for RDF stream
processing built on top of the notion of Linked Stream Data
[24]. The solution offers a native way to interpret and im-
plement common stream processing features (time window
operator, relational database-like join and union operators,
and stream generation operator) in an RDF data stream pro-
cessing environment. In addition, CQELS is equipped with
a flexible query execution framework capable of dynamically
adapting to changes in input data (e.g., operator reordering
to improve query execution).

3. SPARKWAVE

Sparkwave is a solution to perform continuous schema-
enhanced pattern matching over RDF data streams. More
precisely, the goal of Sparkwave is to provide efficient pattern
matching functionalities on RDF streams in a truly contin-
uous way, enabling the expression of temporal constraints
in the form of time windows and taking into account RDF
schema entailments. Unlike other existing solutions, Spark-
wave meets this goal by taking as a foundation an efficient
pattern matching algorithm: Rete [15]. The Rete algorithm,
originally designed as a solution for production rule sys-
tems, represents a general approach to deal with many pat-
tern/many object situations. The algorithm emphasises on
trading memory for performance by building comprehensive
memory structures, called a- and S-networks, designated to
check, respectively, intra- and inter-pattern conditions over
a set of objects.

The intrinsic dataflow nature of Rete goes in favour of
using it also over data streams. However, in order to meet
the goal, the basic Rete algorithm needs to be extended to
properly address RDF schema entailments and the temporal
requirements of data stream processing. Sparkwave resolves
the first issue by extending Rete with an additional network
called e-network. The e-network is positioned in front of the
normal Rete network and is responsible for generating triples
following schema entailments. The e-network nodes are con-
nected to the appropriate a-network nodes in a dataflow
style. Regarding the second issue, Sparkwave provides sup-
port for time windows. This is realised through an extension
of the functionalities of S-network nodes, which are respon-
sible for checking if partial or complete pattern matches fall
into the scope of the designated time window. An high-level
overview of Sparkwave architecture is presented in Figure 1.

In contrast to more generic stream reasoning solutions,
Sparkwave operates over a fixed RDF schema, provides lim-
ited support for static data instances (besides the schema),
and provides limited reasoning functionalities to support
pattern matching. We believe that a fixed schema does not
significantly limit the applicability of our solution, since in



Schema RDF graph pattern

@\Q : RDF graph

| ! pattern
RDF triple L ! instances
streams v & v

00 € Rete %:8 (%g<8
S reTe network §:> network 8&;8

Sparkwave network

Figure 1: Sparkwave architecture

most applications only data statements come through the
streams (e.g., sensor readings). This makes the inclusion of
schema-driven entailments simpler, as it can be realised in
a pre-running step.

The limitations on background knowledge and schema ex-
pressivity come from architectural choices motivated by per-
formance reasons. Since Sparkwave is a memory-intensive
solution, large amounts of static data instances that should
be constantly kept in memory would hinder performance
with respect to processing streamed data instances. The
constraint over schema expressivity (i.e. RDFS constructs
plus inverse and symmetric properties — see Section 3.3) are
also not a significant limiting factor: a recent survey [16] of
used RDF(S)/OWL features, performed over a large corpus
of crawled RDF documents, shows that the top six features
are those that form the core of RDFS, whereas sophisticated
OWL features are rarely used.

In cases where a large amount of background knowledge
(e.g. an external knowledge base) or complex reasoning capa-
bilities are needed, Sparkwave can still be useful. Sparkwave
can indeed be used as the entry block of a larger system,
where more complex operations and semantics, possibly de-
pending on static background knowledge, can be performed
by subsequent blocks which can have less stringent perfor-
mance requirements, benefiting from the fact that they op-
erate on streams that have already been “filtered” by Spark-
wave.

3.1 RDF Data Streams and Graph Patterns

Sparkwave considers a time instant 7 as a value taken
from a set of discrete equidistant values. A time interval T
is defined as a pair of time instants (7s, 7e) for which it holds
that 74 < Te.

A triple t is a tuple (s, p,0) consisting of subject s, pred-
icate p, and object o, as defined in [20]. A streamed triple
st is a pair (¢,7) consisting of a triple ¢ and a time instant
7. The time instant 7 plays the role of a time-stamp and
its value is implicitly assigned when the triple enters Spark-
wave. An RDF data stream ST is an unbounded sequence
of streamed triples st; (1 <4 < n). The sequence is ordered
over the monotonically non-decreasing time-stamp value 7;,
where 7; < Tiy1:

((si,1i,0:),Ti)
((Sit1,Pit1,0641), Tit1)

A triple pattern tp is a triple which may have a variable
declaration for any of the three stream triple constituents,
e.g., (?x,a,7y). A triple fulfils a triple pattern if all defined

triple pattern values are equal to the corresponding triple
values. A graph pattern G is a conjunction of triple patterns
tp; (1 <1i<mn), as in the following example:

(?x, a, b) A7z, ¢, Ty) A (?y, m, n)

This graph pattern consists of three triple patterns. The
first triple pattern matches all triples which have in the pred-
icate position the value a and in the object position the value
b, while the value in the subject position is left unbound, i.e.,
it is declared as the variable ?x. The graph pattern forms
a conjunction in which every repeated declaration of a vari-
able is a join over the respective streamed triples, in which
variable values must be equal. For example, streamed triples
fulfilling the first and the second triple pattern can be joined
only if the values in the subject positions (declared with the
shared variable ?z) are identical.

A graph G is a set of streamed triples st (1 < k < n).
A graph G fulfils a graph pattern G, if for every tp, € Gy
there exists st,,, € G which fulfils tpx and viceversa.

A set of functions can be applied over a graph G. Func-
tion rgm(G) returns the time instant value of the earliest
streamed triple contributing to the graph G, while function
Tgld(G) returns the time instant value of the latest streamed
triple contributing to the graph G;. Function T°¢(G) returns
the time interval (s, 7¢) associated to the graph G:

TG(G) = (TsGtart(G)v Tgtd(G))

For the RDF data stream given in Listing 1(a) and the
graph pattern shown above, all possible graph instances are
given in Listing 1(b).

((t11, a, b), 10)
((t21,m,n), 20)
((t12, a, b), 40)

((t11, ¢, £21), 60)
((t22,m, n), 60)
((t21,1, 0), 70)
(«
(«
(«
(«

G1 = {((t11,a,b),10),
((t11, ¢, 121), 60),
((t21,m,n),20)}

G = {({t12,a,1), 20),
((t12, ¢, t22), 80),

t12, ¢, t22),80) ((t22,m,n),60)}

£22,1, 0, 90)

t31,p,q), 120) T

t32,p, q), 170) T(G2) = (40,80)

(a) (b)

Listing 1: An RDF data stream and pattern matches

3.2 Rete Network

As mentioned at the beginning of Section 3, Sparkwave
architecture is based on the Rete algorithm, which efficiently
performs pattern matching over a set of objects. In the case
of Sparkwave, objects are streamed triples st; € ST. An
example of a Rete network built on top of the example graph
pattern shown in Section 3.1 is given in Figure 2.

The algorithm performs discrimination of streamed triples
through the a-network. In Figure 2, the Rete network has
five a-network nodes checking whether a specific value can
be found in a streamed triple in a specific position (e.g.,
whether predicate value is equal to a, and object value is
equal to b). Each streamed triple compliant to the tests
is stored in the associated a-memory aM,. The algorithm
preserves intermediate matches in B-network in the form
of tokens. A token k is a pair (kparent,st) which refers to
a parent token Kparent and a streamed triple st stored in
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Figure 2: An example of Rete network

an a-memory oM. Each partial match is thus represented
as a linked list of tokens. Since a token at the same time
represents a graph G, we can define the functions Tsﬁart(k),
7E 4(k), and T* (k) in the same way as 7Gq,(G), 754(G),
and T¢(G) (see Section 3.1).

In the example given in Figure 2, f-memory SM> holds
two tokens, Tokenz1 and Tokensz, which point to the cor-
responding streamed triples and parent tokens. Whenever a
new streamed triple appears in a-memory, a join node JN
will be activated to examine the possibility to enlarge the
currently holding partial matches, i.e., to produce new to-
kens. The enlargement of a partial match is possible if the
new streamed triple passes the join node tests. The tests
evaluate the possibility of inter-triple variable bindings. For
example, the join node J N2 checks if a newly streamed triple
can be joined with the streamed triple pointed by a token in
BM; over equality of values in the subject position. If such
possibility exists, a new token is created and placed in S Ma.

Tests in join nodes must be performed over all respec-
tive elements in a- and B-memories possibly connected over
inter-triple variable bindings. In the case of high-frequency
streams and large time windows, the corresponding - and
B-memories may hold large numbers (e.g., tens of thou-
sands) of triples and associated tokens. In such a realm,
a naive implementation based on a nested loop join algo-
rithm?® would certainly hinder the performance goals that
Sparkwave strives to meet. Therefore, Sparkwave implemen-
tation is based on a hash join algorithm* in which a- and
B-memories hold hash tables in which hash values are com-
puted over triple values corresponding to inter-triple vari-
able bindings. Since join node tests are usually extensively
repeated, the computational price paid to compute hash val-
ues is minor with respect to the price of selecting appropriate
triples and tokens.

3.3 Entailments (:-Network)

The e-network is responsible for streamed triples follow-
ing schema entailments, so that a- and S-networks can find
matches to patterns taking into account implicit knowledge.

Shttp://en.wikipedia.org/wiki/Nested_loop_join
“http://en.wikipedia.org/wiki/Hash_join

The RDF semantics specification [19] includes a set of
entailment rules to derive new statements from known ones
(see Table 1°). Since in Sparkwave the schema is fixed, some
rules have no impact at runtime: in particular, rules rdfsb,
rdfs6, rdfs8, rdfsl0, rdfsll, rdfs12 and rdfs13 have in their
bodies only T-box statements, thus cannot be activated by
statements in the streams. Rule rdfl is also not relevant
at runtime because, if the property p is not in the schema,
nothing else (i.e., domain, range, sub/super-properties) can
be stated about it, thus no further entailments are possible.
Finally, unless we look for resources (i.e. using rdfs:Resource
as type), rules rdfs4a, rdfs4b and rdfs8 are not relevant, since
their output is not used as input by any other rule. There-
fore, only rules rdfs2, rdfs3, rdfs7 and rdfs9, i.e. inference
based on the hierarchies of classes and properties together
with their domain and range, need to be considered at run-
time. The other rules are relevant only when the e-network
is built, based on the schema and the patterns.

In addition to RDFS entailments, Sparkwave supports a
few constructs from OWL that fit in the approach and can be
useful in adding more expressivity to schemas. In particular,
Sparkwave supports owl:inverseOf and owl:SymmetricProperty,
through the entailment rules shown in Table 2. Rule invl is
again schema-only, whereas rules inv2 and sym are relevant
at runtime.

A similar discussion (limited to RDFS rules) can be found
in [26], which distinguishes between rules for online and of-
fline computation, with the latter used to compute schema
closure. Similarly, in Sparkwave we can pre-compute schema
closure, and use it in building the e-network. In contrast to
the typical usage of Rete in forward-chaining reasoners, i.e.
detecting patterns corresponding to the bodies of entailment
rules, our approach encodes in the e-network schema-driven
property hierarchies with specified domain and range defini-
tions connected to class hierarchies. The triples that consti-
tute the schema are not part of the data streams, therefore
they are not present as data items in the network and are not
used as such in the pattern-matching process. Working on

SRules are named as in the specification. We omit rules
dealing with blank nodes and literals, since they are not
relevant to our discussion.



Table 1: RDF/RDFS entailment rules

Rule name | If

Then add

rdfl (xpy) (p rdf:type rdf:Property)

rdfs2 (p rdfs:domain c) (x p y) (x rdf:type c)

rdfs3 (p rdfs:range c) (x p y) (y rdf:type c)

rdfs4a (xpy) (x rdf:type rdfs:Resource)
rdfs4b (xpy) (y rdf:type rdfs:Resource)
rdfs5 (p rdfs:subPropertyOf q) (q rdfs:subPropertyOf r) (p rdfs:subPropertyOf r)

rdfs6 (p rdf:type rdf:Property) (p rdfs:subPropertyOf p)

rdfs7 (p rdfs:subPropertyOf q) (x p y)

(xay)

rdfs8 (c rdf:type rdfs:Class) (c rdfs:subClassOf rdfs:Resource)
rdfs9 (c rdfs:subClassOf d) (x rdf:type c) (x rdf:type d)

rdfs10 (c rdf:type rdfs:Class) (c rdfs:subClassOf c)

rdfs11 (c rdfs:subClassOf d) (d rdfs:subClassOf e) (c rdfs:subClassOf e)

rdfs12 (p rdf:type rdfs:ContainerMembershipProperty) (p rdfs:subPropertyOf rdfs:member)
rdfs13 (x rdf:type rdfs:Datatype) (x rdfs:subClassOf rdfs:Literal)

Table 2: Extra entailment rules from OWL

Rule name | If Then add

invl (p owl:inverseOf q) (q owl:inverseOf p)
inv2 (p owl:inverseOf q) (x p y) (y q x)

sym (p rdf:type owl:SymmetricProperty) (x p y) {y p x)

a fixed schema, and limiting the supported entailment rules
to the listed ones, which are always activated by a single
triple from the stream, allow the e-network to be stateless
(i-e., no state is kept between subsequent triples entering the
e-network).

Given the schema, the e-network is built as follows. First,
a node is created for each property and each class in the
schema.®

e for each property p in the schema, a node with the
triple pattern (? p ?) is created (property node);

e for each class ¢ in the schema, a node with the triple
pattern (? rdf:type c) is created (class node).

Nodes can be connected by four different types of links:

e S-links, which transfer the subject of the triple to the
following class node;

e (O-links, which transfer the object of the triple to the
following class node (where it becomes the subject);

e SO-links, which transfer both the subject and the ob-
ject of the triple to the following property node;

e (OS-links, which transfer both the subject and the ob-
ject of the triple to the following property node swap-
ping them (i.e., subject becomes object and vice versa).

Links between nodes in the e-network are created as follows:

e for each subclass statement in the schema, an S-link
between the corresponding class nodes is created (from
the subclass to the superclass);

e for each subproperty statement in the schema, an SO-
link between the corresponding property nodes is cre-
ated (from the subproperty to the superproperty);

e for each domain statement in the schema, an S-link
from the corresponding property node to the corre-
sponding class node is created;

6 Actually, only the subset of schema, that is relevant for the
given patterns is considered, as explained in Section 3.4.

e for each range statement in the schema, an O-link from
the corresponding property node to the corresponding
class node is created;

e for each inverse property statement in the schema, an
OS-link between the corresponding property nodes is
created (so that two nodes representing a pair of in-
verse properties p and ¢ are connected by a pair of
links, one from p to ¢ and one from ¢ to p);

e for each symmetric property statement in the schema,
an OS-link is created from the corresponding property
node to itself.

An example of how to build the e-network given a schema
is presented in Section 3.8.

3.4 Schema Pre-Processing

Conceptually, an existing ontology that describes data in-
stances in the streams could be directly used to build the
e-network. However, such ontology could contain a signif-
icant amount of axioms of no interest with respect to the
patterns. Directly using that ontology would thus be inef-
ficient, because a large amount of unneeded entailed triples
could be generated, wasting processing time and memory
both in the e- and a-network. For this reason, Sparkwave
performs a pre-processing step of the given schema before
using it to build the e-network. The reduced schema result-
ing from the pre-processing step is a subset of the original
one, and depends on the patterns.

Only class and property definitions for classes and prop-
erties relevant to the given patterns are kept in the reduced
schema. Relevant classes are all classes present in the pat-
terns and their subclasses, whereas relevant properties are
all properties present in the patterns and their subproper-
ties, all properties whose domain or range is a relevant class
and their subproperties, all properties which are inverse of a
relevant property and their subproperties. A further effect
of the pre-processing stage is that the class and property
hierarchies in the reduced schema are “flattened”: for exam-
ple, if the original schema contains three classes ¢, d and
e, where (c rdfs:subClassOf d) and (d rdfs:subClassOf e), but



only class e is present in the patterns, there is no interest in
inferring that something of type ¢ has also type d. There-
fore, this schema would be reduced to (c rdfs:subClassOf e)
and (d rdfs:subClassOf e}, “flattening” all subclasses of e to
the same level.

3.5 Time Window

One of the crucial temporal aspects of stream processing
is the support for time windows. A time window partitions
an RDF stream in the context of time, thus reducing the
number of triples over which pattern matching is performed,
which is compliant to the nature of typical applications and
limited computing resources. Keeping a windowed triple
stream up-to-date (and deallocating resources occupied by
staled triples) comes with additional processing penalties.
In Sparkwave additional overhead is experienced due to the
existence of the implicit knowledge derived by the e-network.

A way to extend the Rete algorithm with time window
support is described in [29]. This solution proposes an ex-
tension of B-network nodes, i.e. join nodes, with features for
window evaluation. The extended nodes are continuously
tracking window boundaries based on the latest injected
events, on top of which event filtering is performed. The
nodes are closely collaborating with the garbage collection
thread, which tracks single event timeouts and initiates a-
and S-network cleanups in a callback fashion.

Sparkwave implements a similar approach to perform time
window checks as S-network nodes extensions, but in con-
trast to the reported solution Sparkwave continuously and
incrementally updates the time interval value T%(k) of a
partially fulfilled match represented by a token k, which is
kept in the token itself. With this approach, time window
boundaries are token-specific rather than join-node-specific.
For this reason, the same join node can be potentially used
by multiple patterns having different time window speci-
fications, therefore different patterns can benefit from each
other’s partial matches. In addition, the interaction between
the main Sparkwave components, i.e., the main Rete compu-
tation and garbage collection procedure (see Section 3.7), is
simplified, thus enabling straightforward and efficient clean-
up operations.

Since the time interval value of the token 7" (k) is exten-
sively considered during join node tests, the solution adopted
by Sparkwave reduces the effort needed to compute it. The
time interval value of a new token Tk(knew) is computed on

oM; oM
<tll,a,b,10> <tll,a,b,10>
BM; BM;
Tokeny; (10,10)] Token;; (10,10)
oM, alM,
<t21,m,n,20> <t21,m,n, 20>
BM, BM,
Tokeny; (10,20)] Tokeny, (10,20)
oM; alMs
<tll,c,t21, 60>
BMeroduction BMproduction
Token:
a - Memories B - Memories a - Memories B - Memories

(@) (b)

Figure 3: Incremental computation of time window

top of the time interval value of the parent token 7% (k) and
the time-stamp value 7 of the streamed triple st = (¢,7):

T < T.ftart (k)
Tskta,'rt(k’l) S T S Tj’nd(k)
T> Tfnd(k)

(Tv Tzfnd(k))v
(Tftart(k% Te?nd(k))v
(Tsktart(k)7 T)a

The token knew can be built only if its time interval value
still falls inside of a defined time window. Figure 3 shows
an example of an incremental update of a partial match
which happens when a new streamed triple arrives at aMs.
In example (a) the current partial match is represented by
Tokensa1, which spans over the time interval (10,20). In
example (b) the incremented partial match represented by
Tokensi includes the new streamed triple, and spans over
the time interval (10, 60).

3.6 Static Data Instances

Sparkwave focuses on pattern matching on streams and
it is not intended to be directly used in cases in which the
data in the stream need to be joined with those in a large
knowledge base. As already stated, in such cases Sparkwave
can be used to pre-filter the streams, and it is complemen-
tary to other solutions which are designed to deal with large
knowledge bases (e.g., see C-SPARQL [7]). In many cases,
however, a fairly limited amount of background knowledge,
in the form of static data instances, can be considered to be
part of the domain definition together with the schema, and
needs to be joined at runtime with the dynamic data com-
ing from the streams. For example, in an application which
processes streams of data regarding the status of parking
spaces in several car parks, the definition of the car parks
could constitute such static knowledge and be useful in defin-
ing the patterns. Sparkwave therefore provides support for
static data by allowing the injection of static triples into the
network before stream processing begins.

Different data nature calls for a different treatment of
static triples in Sparkwave. Like streamed triples, static
triples could also initiate entailment of implicit knowledge.
Therefore, they need to pass through the e-network and
activate the subsequent a-network nodes. In contrast to
streamed triples, static triples need to be continuously present
in a-memory nodes, to be joined with upcoming stream
triples and form tokens.

Sparkwave loads static triples in the network after build-
ing inner structures (e-, a- and B-network nodes) but be-
fore processing streamed triples. Since static triples have
unconstrained life-time, the garbage collector ignores their
presence, and join nodes do not take them into account in
computing time interval values of tokens.

3.7 Garbage Collection

The issue of garbage collection is closely related to the
time-based window support. The garbage collector respon-
sibility is to clear e-, a- and [-network nodes of staled
streamed triples and dependent tokens. The garbage col-
lection algorithm is shown in Algorithm 1. As opposed to
the solution presented in [29], which is based on timers run
by a separate garbage collection thread triggering a- and
B-network clean-up in a callback fashion, in Sparkwave the
garbage collector runs as a part of a single Rete computa-
tional thread. This solution simplifies the internal Rete data
structures since there is no need for thread synchronisation

Tk (knew) =
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(a) An example of social media analytics ontology

fb:JohnDoe fb:update fb:postl23
fb:postl23 fb:mentions geo:2775220
twd:johnd twd:post twd:tweetd56
twd:tweet456 twd:talksAbout geo:2775220

(c) Streamed triples

(d) Inferred triples

REGISTER QUERY MultiplePlaceNotification AS
PREFIX twd: <http://twitter.example.org/ns#>.
PREFIX sma: <http://socialmedia.example.org/ns#>.
PREFIX sioc: <http://rdfs.org/sioc/ns#>.
PREFIX fb: <http://facebook.example.org/ns#>.
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
SELECT ?tweet ?fbpost ?user
FROM STREAM <http://facebook.example.org/update/stream>
[RANGE 5m]
FROM STREAM <http://twitter.example.org/update/stream>
[RANGE 5m]
FROM <http://foaf.example.org/friends.rdf>
WHERE {
?tweet rdf:type twd:Tweet.
?tweet sma:talksAbout ?place.
?twitteraccount sioc:creator_ of ?tweet.
?twitteraccount sioc:account_of ?user.
?fbpost rdf:type fb:StatusUpdate.
?fbpost sma:talksAbout ?place.
?fbaccount sioc:creator_of ?fbpost.
?fbaccount sioc:account of ?user.

}
(b) An RDF graph pattern in a form of a C-SPARQL query

twd:tweet456 rdf:type twd:Tweet
twd:tweet456 sma:talksAbout geo:2775220
twd:johnd sioc:creator of twd:tweetd56
fb:postl23 rdf:type fb:StatusUpdate
fb:postl23 sma:talksAbout geo:2775220
fb:JohnDoe sioc:creator of fb:postl23

fb:JohnDoe sioc:account_of foaf:JohnDoe
twd:johnd sioc:account of foaf:JohnDoe

(e) Static triples

Figure 4: Example ontology, C-SPARQL-like query and examples of streamed, inferred and static triples

and deadlock handling, which further contributes to more
efficient processing.

As shown in Algorithm 1, the garbage collection procedure
first removes from the e-network all tokens connected to al-
ready processed triples. Subsequently, the algorithm com-
putes the threshold timepoint, serving as a decision point
about staled triples. All such triples and associated tokens
are removed from a- and and S-memories in case they are
not part of the static data instances.

Algorithm 1 Garbage collection

for triple < epsilon.processedTriples do
for token <« triple.tokens do
token.removeT okenFromNode()
end for
epsilon.removeT okens(triple)
end for
threshold < currentT'ime — timeW indow
for alphaMemory < rete.alphaMemories do
for triple < alphaMemory.triples do
if triple.timestamp < threshold then
if triple & staticTriples then
triple.remove()
end if
end if
end for
end for

3.8 Example

In this section we discuss a complete Sparkwave network
instance based on the social media analytics example pre-
sented in [11]. Figure 4 shows a social media analytics
ontology (a) and an RDF graph pattern in the form of a

C-SPARQL query (b). Grounded in established ontologies
(FOAF” and SIOC?®), this ontology presents a possible way
to integrate streams of data coming from different social
networking platforms (in our example Facebook and Twit-
ter). The pattern aims at detecting when the same person
talks about the same place on both channels. It is worth
noting that the pattern is written mostly by relying on the
concepts which integrate data streams from different chan-
nels. Since streamed data annotations are channel-specific,
Sparkwave schema-entailment capabilities are necessary for
pattern matching. Examples of streamed (c), inferred (d)
and static (e) triples are also shown in Figure 4.

Figure 5 shows two versions of the e-network: the full net-
work (a) and the corresponding reduced network (b). The
full network is built taking all schema definitions from the
ontology, without taking the pattern into account. In con-
trast, the schema pre-processing step (as described in Sec-
tion 3.4) results in a significantly simpler network structure
which holds only the nodes and links that are relevant and
can contribute to the completion of the given RDF graph
pattern. For example, the reduced network has two class
nodes instead of eight, and four S-links instead of fifteen. De-
pending on the complexity of the given schema and pattern,
the pre-processing step can significantly reduce the complex-
ity of the e-network.

Finally, Figure 6 shows an instance of the Rete network ac-
cording to the RDF graph pattern. The a-network nodes are
responsible for checking intra-triple conditions (e.g., whether
a triple has as predicate rdf:type and as object fb:StatusUpdate)
and for storing the triples passing the tests in the corre-
sponding aM,, arrays. When a new triple appears in an

"http://www.foaf-project.org/
8http://sioc-project.org/
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Figure 6: Rete network

[} foaf:Agent

nodes are inputs to the a-network nodes. Since there is
enough knowledge on how a triple looks like in the e-network,
specific € and a nodes are directly connected. For example,
the output of the fb:StatusUpdate class node is directly con-
nected to aMs>. These direct links potentially bring signif-
icant savings of computational resources. Streamed triples
not amenable for e-network processing enter the a-network
at the level of aRoot.

4. EVALUATION

In order to evaluate the performance of Sparkwave, we de-
fined some tests reusing part of the dataset from the Berlin
SPARQL Benchmark (BSBM) [9]. The BSBM defines a
suite of benchmarks to compare the performance of RDF

(a) Full e-network

os stores and, in general, of storage systems that expose SPARQL
" . . .
“‘P = endpoints. The benchmark is built around an e-commerce
use case in which a set of products is offered by different
os vendors, and consumers have posted reviews about the prod-

[} £b:statusUpdate
@)

ucts.

The BSBM is not intended for measuring stream process-
ing systems and by itself does not provide data streams, so
we had to adapt it to our needs. In particular, we reused
the data describing product types and offers. The BSBM
generates a single-rooted hierarchy of product types, whose
depth and number of classes are determined by a scaling fac-
(b) Reduced e-network (after pre-processing) tor; each product is then assigned to a product type at the
leaf level of the hierarchy. The hierarchy of product types
constitutes for us the schema. The BSBM also generates a
number of offers related to products, which for us constitute
the data stream.® Given these schema and stream from the
BSBM, we defined three graph patterns, shown in Listing 2:

W twd:talksabout
[ sma:talksabout

[ twd:twittedFrom

so

Figure 5: Epsilon network

aM,, the associated B-network join node JN,, is activated

in order to attempt to join the new entry with the existing 1. In pattern 1 we look for offers for products of a given
triples according to variable bindings. In case such a join is type; for non-leaf types, inference needs to take place
possible, a new token is generated, linked with the existing on the hierarchy of product types. There are no static
token (representing an existing partial match) and stored in instances.

the associated SM,, node, thus representing an incremental
update to the partial match. As explained in Section 3.5,
JN,, nodes are also performing time-based window checks.

It is worth noting that Figures 5 and 6 are actually con- 9We include in the stream also triples to assert the type of
nected (not shown in the figures), i.e., outputs of e-network the product of each offer (i.e. one extra triple per offer).

2. Additionally to the conditions set in pattern 1, in pat-
tern 2 we only want offers for which the vendor is




from a given country. The binding between vendors
and countries is given through static instances.

3. Additionally to the conditions set in pattern 2, in pat-
tern 3 we only want offers for products for which the
producer is from a given country. The binding be-
tween producers and countries is given through static
instances.

— Pattern 1:
REGISTER QUERY BSBSOfferDetection AS
PREFIX bsbm-voc:<http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>
PREFIX bsbm-inst:<http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/>
PREFIX rdf:<http://www.w3.0rg/1999/02/22-rdf-syntax -ns#>
PREFIX dc:<http://purl.org/dc/elements/1.1/>
SELECT ?offer ?product ?vendor ?price 7from 7to ?delivery ?webpage
?publisher ?date
FROM STREAM <http://bsbm.org/stream>
FROM <http://members.sti2.at/”srdjank/ProductTypeHierarchy.rdf>
WHERE {
?offer rdf:type bsbm-voc:0ffer.
?o0ffer bsbm-voc:product ?product.
7offer bsbm-voc:vendor ?vendor.
?70ffer bsbm-voc:price ?price.
7offer bsbm-voc:validFrom 7from.
7offer bsbm-voc:validTo 7to.
?0ffer bsbm-voc:deliveryDays 7delivery.
?0ffer bsbm-voc:offerWebpage ?webpage .
?offer dc:publisher ?7publisher.
?offer dc:date 7date.
?product rdf:type bsbm-inst:TargetProductType
¥

— Pattern 2: additionally to pattern 1, in WHERE clause:
?vendor bsbm-voc:country http://downlode.org/rdf/iso-3166/countries#GB

— Pattern 3: additionally to pattern 1, in WHERE clause:

?vendor bsbm-voc:country http://downlode.org/rdf/iso-3166/countries#GB
7product bsbm-voc:producer ?7producer

?producer bsbm-voc:country http://downlode.org/rdf/iso-3166/countries#DE

Listing 2: Product offer detection patterns

Sparkwave implementation is written in Java. In order
to measure throughput, we use a small program that reads
the input data (i.e. the offers) from a file and sends them
to Sparkwave in N-Triples format through a Unix domain
socket at the highest possible rate, and we measure the time
needed to process all the data. The schema (i.e. the prod-
uct type hierarchy) is loaded before starting to stream the
data, since it is needed to build the e-network. The static in-
stances for patterns 2 and 3 are loaded after the schema. In
some tests we used different schemas with different numbers
of classes: the smallest one has 329 product types arranged
in a 4-levels hierarchy (including the root level), whereas the
largest one has 22,527 product types arranged in a 6-levels
hierarchy. We used different target product types in the
patterns, having different number of subclasses (from 0 to
1,608). The test stream contains 200,000 offers, correspond-
ing to almost 2.2 million triples. Tests were run on a Linux
machine with CPU Intel Core i7 620M (4 MB cache, 2.66
GHz) and 4 GB of memory.

Results of throughput tests for pattern 1 are shown in
Figure 7: the chart shows the throughput in relation to the
size of the time window, in the case of a schema with 329
classes and a target product type with 40 subclasses. In or-
der to compare with CQELS and C-SPARQL, which do not
support reasoning,'® we created a second stream including
also the triples that associate products to the correspond-
ing non-leaf product types, and we tested CQELS and C-
SPARQL, and also Sparkwave, with this second stream. The
throughput of course decreases when the time window size
increases, but the chart shows that Sparkwave achieves much

10C.SPARQL authors describe a technique for stream rea-
soning in [7], however the publicly available implementation
of C-SPARQL does not provide support for reasoning on
data streams.
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Figure 8: Sparkwave, CQELS and C-SPARQL mem-
ory consumption for pattern 1

higher throughput than C-SPARQL and CQELS, especially
for smaller sizes of the window: with a time window of 5 sec-
onds Sparkwave (with reasoning) has a maximum through-
put 3.1 times higher than C-SPARQL and 10.6 times higher
than CQELS, and with a time window of 25 seconds Spark-
wave (with reasoning) has a maximum throughput 2.9 times
higher than C-SPARQL and 5.4 times higher than CQELS.
The advantage of Sparkwave over CQELS and C-SPARQL is
even bigger when the systems are compared on the same set
of features, i.e. without reasoning. The chart also shows that
the impact of reasoning on the performance of Sparkwave
is limited, causing a decrease of the maximum throughput
around 15-20%.

Figure 8 shows the behaviour of Sparkwave, CQELS and
C-SPARQL in terms of memory consumption, in the same
test conditions used to measure throughput. Sparkwave
memory needs increase when increasing the size of the time
window, but are below those of CQELS and C-SPARQL.

In order to evaluate the impact of the size of the schema on
Sparkwave performance, we repeated the test using different
target product types, having from 4 to 1,608 subclasses. The
result is that the throughput is basically unaffected. This
was expected, because a larger schema implies more class
nodes in the e-network, but the processing is basically the
same (also because schema pre-processing reduces all sub-
classes of the target class to direct subclasses, no matter how
many levels are present in the original hierarchy).
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3

Finally, Figure 9 shows Sparkwave throughput for pat-
terns 2 and 3 in relation to the amount of static triples in
the system, with and without reasoning, in the case of a
time window of 1 second. These results show that the loss
of performance due to the presence of static knowledge is
very small. Moreover, the difference between the two pat-
terns does not have a significant impact: even if pattern 3
is slightly more complex than pattern 2, the throughput is
basically the same, and shows some difference only in the
cases with a larger amount of static triples. Finally, as in
the case of pattern 1, the performance loss caused by rea-
soning is not dramatic, and as expected it does not depend
on the amount of static instances.

S. FUTURE WORK

Sparkwave performs RDF graph pattern detection, i.e.,
detection of triple pattern conjunctions bound over joining
variables (and occurring inside a time window). Our inten-
tion is to extend its capabilities towards supporting other
logical operators (disjunction and negation), data operators
(comparison and arithmetic) and temporal operators (sup-
port for Allen temporal operators [3] on top of interval-
based semantics [2]). The existing work reported in [28, 30],
which investigates the integration of temporal reasoning in
an event-based Rete system, will be used as a foundation
and will be further adapted to the temporal characteristics
of RDF graph structures.

In parallel with the development of Sparkwave engine ca-
pabilities, we intend to formalise its RDF graph pattern
expression language, by extending C-SPARQL and borrow-
ing temporal operator elements from EP-SPARQL. The lan-
guage will support the aforementioned logical and data op-
erators to express patterns over data streams, as motivated
by [17] and [14]. Similarly to C-SPARQL, the language will
enable the declaration of multiple streams contributing to
the pattern, but in contrast to it, the language will also al-
low the allocation of sub-patterns to different streams, thus
providing means to precisely define which part of a graph
pattern needs to be fulfilled by which stream. We believe
that this feature will play an important role in supporting
multiple stream aggregation and integration cases. Due to
the same reasons, we intend to enable the definition of time-
based windows at the level of sub-patterns, thus allowing
cascading expression of time-based windows over a single
pattern.

Event consumption strategies (also called parameter con-
texts) resolve the issue of multiple simultaneous matches
to a pattern inside of a time window. For example, in a
typical sensor application only the most recent reading of
a sensor reflects the current state of the observed object.
Sparkwave currently supports a simple strategy (known as
“unrestricted”) which outputs a number of matches equal to
all possibilities build on top of triple sets (streamed or en-
tailed) contributing to a pattern in a time-based window.
Besides this simple strategy, the literature also enumerates
more restrictive approaches (e.g., “recent” and “chronolog-
ical”) to deal with the problem [12, 2]. Our intention is
to provide support for other consumption strategies, taking
into account also the presence of entailed statements.

6. CONCLUSION

An efficient mechanism for schema-enhanced pattern de-
tection on RDF data streams is required to address the
challenges of stream processing on the Web. In this paper
we presented Sparkwave, a system based on the Rete algo-
rithm, extended to include statements materialised through
schema entailments and to support the temporal nature of
data streams. The schema entailments support is provided
through the introduction of e-network which precedes Rete
network. We described Sparkwave constituent building blocks
and presented a way to build the network. The temporal
nature of data streams is tackled through time-based win-
dow support, implemented by extending the behaviour of
B-network nodes to perform time window constraint checks.
We evaluated our approach by reusing part of the dataset
from the Berlin SPARQL Benchmark, taking into account
the size of the window and the amount of static instances,
and compared Sparkwave performance with CQELS and C-
SPARQL. In the future, we plan to extend Sparkwave with
more features borrowed from Complex Event Processing sys-
tems, such as a richer set of temporal operators and con-
sumption strategies.
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